If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x^2-9x)-(5x^2+10x)=0
We get rid of parentheses
3x^2-5x^2-9x-10x=0
We add all the numbers together, and all the variables
-2x^2-19x=0
a = -2; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·(-2)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*-2}=\frac{0}{-4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*-2}=\frac{38}{-4} =-9+1/2 $
| 6k=7k-13 | | 10=12x-5x+13x | | 2x2=25x+42 | | 20-5v=19v-14v-20 | | 4+x–17=22 | | 6x-(9x+7)=6-3x | | 20-9x+x2=0 | | 150=6(3n+6)/n | | 84=-3d+7-8d | | (3x^2-9x)-(5x^2+10)=0 | | 4-1/10x=3/5 | | 102.5v+245.8=758.3 | | 12g+6=13g-2 | | 9x^-1=-2 | | 2x-12+5x=18 | | 2.9w=3.1w+1.1 | | 10x-90=-40 | | x-8(5)=5 | | 4x+5+26x=65 | | 3(5-y)-4(5+y)=23 | | 17b-19=14b+2 | | 10=12x-5+13x | | 9+2x3=11x3 | | 18.34+9.9n+8.6=-6.2-18.14 | | -(b+5)+2=-7 | | 4x^-200=20 | | 15c=-3+16c | | 25=9+2d | | –(2n+4)+6=–9+4(2n+1 | | 8(v+1)-4v=2(2v+3)-10 | | 4a+2=4a+82 | | -16h+15=-19h-15 |